Apache HBase Connector
Apache HBase is a highly reliable, high-performance, column-oriented, and scalable distributed storage system. Using HBase technology, large-scale structured storage clusters can be built on cheap PC Servers. Unlike general relational databases, Apache HBase is a database suitable for unstructured data storage because HBase storage is based on a column rather than a row-based schema.
Apache Flink® does not officially provide a connector for HBase DataStream. Apache StreamPark encapsulates HBaseSource and HBaseSink based on HBase-client
. It supports automatic connection creation based on configuration and simplifies development. StreamPark reading Apache HBase can record the latest status of the read data when the checkpoint is enabled,
and the offset corresponding to the source can be restored through the data itself. Implement source-side AT_LEAST_ONCE.
HBaseSource implements Flink Async I/O to improve streaming throughput. The sink side supports AT_LEAST_ONCE by default. EXACTLY_ONCE is supported when checkpointing is enabled.
StreamPark reading Apache HBase can record the latest state of the read data when checkpoint is enabled. Whether the previous state can be restored after the job is resumed depends entirely on whether the data itself has an offset identifier, which needs to be manually specified in the code. The recovery logic needs to be specified in the func parameter of the getDataStream method of HBaseSource.
Dependency of Apache HBase writing
Apache HBase Maven Dependency:
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>${hbase.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-common</artifactId>
<version>${hbase.version}</version>
</dependency>
Regular way to write and read Apache HBase
1.Create database and table
create 'Student', ,
2.Write demo and Read demo
- read data
- data input
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;
import java.util.List;
public class FlinkHBaseReader {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 添加数据源
DataStream<String> stream = env.addSource(new HBaseReader());
stream.print();
env.execute("FlinkHBaseDemo");
}
}
class HBaseReader extends RichSourceFunction<String> {
private Connection connection = null;
private ResultScanner rs = null;
private Table table = null;
@Override
public void open(Configuration parameters) throws Exception {
org.apache.hadoop.conf.Configuration hconf = HBaseConfiguration.create();
hconf.set("hbase.zookeeper.quorum", "localhost:2181");
hconf.set("zookeeper.property.clientPort", "/hbase");
connection = ConnectionFactory.createConnection(hconf);
}
@Override
public void run(SourceContext<String> sourceContext) throws Exception {
table = connection.getTable(TableName.valueOf("Student"));
Scan scan = new Scan();
scan.addFamily(Bytes.toBytes("Stulnfo"));
rs = table.getScanner(scan);
for (Result result : rs) {
StringBuilder sb = new StringBuilder();
List<Cell> cells = result.listCells();
for (Cell cell : cells) {
String value = Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength());
sb.append(value).append("-");
}
String value = sb.replace(sb.length() - 1, sb.length(), "").toString();
sourceContext.collect(value);
}
}
@Override
public void cancel() {
}
@Override
public void close() throws Exception {
if (rs != null) {
rs.close();
}
if (table != null) {
table.close();
}
if (connection != null) {
connection.close();
}
}
}
import com.zhisheng.common.utils.ExecutionEnvUtil;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
/**
* Desc: Read stream data, then write to Apache HBase
*/
@Slf4j
public class HBaseStreamWriteMain {
public static void main(String[] args) throws Exception {
final ParameterTool parameterTool = ExecutionEnvUtil.createParameterTool(args);
StreamExecutionEnvironment env = ExecutionEnvUtil.prepare(parameterTool);
DataStream<String> dataStream = env.addSource(new SourceFunction<String>() {
private static final long serialVersionUID = 1L;
private volatile boolean isRunning = true;
@Override
public void run(SourceContext<String> out) throws Exception {
while (isRunning) {
out.collect("name" + Math.floor(Math.random() * 100));
}
}
@Override
public void cancel() {
isRunning = false;
}
});
dataStream.addSink(new HBaseWriter());
env.execute("Flink HBase connector sink");
}
}
/**
Write to Apache HBase
Inherit RichSinkFunction to override the parent class method
<p>
When writing to Apache HBase, 500 items are flushed once, inserted in batches, using writeBufferSize
*/
class HBaseWriter extends RichSinkFunction<String> {
private static final Logger logger = LoggerFactory.getLogger(HBaseWriter.class);
private static org.apache.hadoop.conf.Configuration configuration;
private static Connection connection = null;
private static BufferedMutator mutator;
private static int count = 0;
@Override
public void open(Configuration parameters) throws Exception {
configuration = HBaseConfiguration.create();
configuration.set("hbase.zookeeper.quorum", "localhost:21981");
configuration.set("zookeeper.property.clientPort", "/hbase");
try {
connection = ConnectionFactory.createConnection(configuration);
} catch (IOException e) {
e.printStackTrace();
}
BufferedMutatorParams params = new BufferedMutatorParams(TableName.valueOf("Student"));
params.writeBufferSize(2 * 1024 * 1024);
mutator = connection.getBufferedMutator(params);
}
@Override
public void close() throws IOException {
if (mutator != null) {
mutator.close();
}
if (connection != null) {
connection.close();
}
}
@Override
public void invoke(String values, Context context) throws Exception {
//Date 1970-01-06 11:45:55 to 445555000
long unixTimestamp = 0;
String RowKey = String.valueOf(unixTimestamp);
Put put = new Put(RowKey.getBytes());
put.addColumn("Stulnfo".getBytes(), "Name".getBytes(), values.getBytes());
mutator.mutate(put);
//每满500条刷新一下数据
if (count >= 500) {
mutator.flush();
count = 0;
}
count = count + 1;
}
}
Reading and writing Apache HBase in this way is cumbersome and inconvenient. StreamPark
follows the concept of convention over configuration and automatic configuration.
Users only need to configure Apache HBase connection parameters and Flink operating parameters. StreamPark will automatically assemble source and sink,
which greatly simplifies development logic and improves development efficiency and maintainability.
write and read Apache HBase with Apache StreamPark™
1. Configure policies and connection information
# apache hbase
hbase:
zookeeper.quorum: test1,test2,test6
zookeeper.property.clientPort: 2181
zookeeper.session.timeout: 1200000
rpc.timeout: 5000
client.pause: 20
2. Read and write Apache HBase
Writing to Apache HBase with StreamPark is very simple, the code is as follows:
- read Apache HBase
- write Apache HBase
import org.apache.streampark.common.util.ConfigUtils
import org.apache.streampark.flink.core.java.wrapper.HBaseQuery
import org.apache.streampark.flink.core.scala.FlinkStreaming
import org.apache.streampark.flink.core.scala.request.HBaseRequest
import org.apache.streampark.flink.core.scala.source.HBaseSource
import org.apache.flink.api.scala.createTypeInformation
import org.apache.hadoop.hbase.CellUtil
import org.apache.hadoop.hbase.client.{Get, Scan}
import org.apache.hadoop.hbase.util.Bytes
import java.util
object HBaseSourceApp extends FlinkStreaming {
override def handle(): Unit = {
implicit val conf = ConfigUtils.getHBaseConfig(context.parameter.toMap)
val id = HBaseSource().getDataStream[String](query => {
new HBaseQuery("person", new Scan())
},
//The following methods determine the logic for restoring offsets from checkpoints
r => new String(r.getRow), null)
//flink Async I/O
HBaseRequest(id).requestOrdered(x => {
new HBaseQuery("person", new Get(x.getBytes()))
}, (a, r) => {
val map = new util.HashMap[String, String]()
val cellScanner = r.cellScanner()
while (cellScanner.advance()) {
val cell = cellScanner.current()
val q = Bytes.toString(CellUtil.cloneQualifier(cell))
val (name, v) = q.split("_") match {
case Array(_type, name) =>
_type match {
case "i" => name -> Bytes.toInt(CellUtil.cloneValue(cell))
case "s" => name -> Bytes.toString(CellUtil.cloneValue(cell))
case "d" => name -> Bytes.toDouble(CellUtil.cloneValue(cell))
case "f" => name -> Bytes.toFloat(CellUtil.cloneValue(cell))
}
case _ =>
}
map.put(name.toString, v.toString)
}
map.toString
}).print("Async")
}
}
import org.apache.streampark.flink.core.scala.FlinkStreaming
import org.apache.streampark.flink.core.scala.sink.{HBaseOutputFormat, HBaseSink}
import org.apache.flink.api.scala._
import org.apache.streampark.common.util.ConfigUtils
import org.apache.hadoop.hbase.client.{Mutation, Put}
import org.apache.hadoop.hbase.util.Bytes
import java.util.{Collections, Random}
object HBaseSinkApp extends FlinkStreaming {
override def handle(): Unit = {
val source = context.addSource(new TestSource)
val random = new Random()
//定义转换规则...
implicit def entry2Put(entity: TestEntity): java.lang.Iterable[Mutation] = {
val put = new Put(Bytes.toBytes(System.nanoTime() + random.nextInt(1000000)), entity.timestamp)
put.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("cid"), Bytes.toBytes(entity.cityId))
put.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("oid"), Bytes.toBytes(entity.orderId))
put.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("os"), Bytes.toBytes(entity.orderStatus))
put.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("oq"), Bytes.toBytes(entity.quantity))
put.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("sid"), Bytes.toBytes(entity.siteId))
Collections.singleton(put)
}
//source ===> trans ===> sink
//1)INSERT WAY 1
HBaseSink().sink[TestEntity](source, "order")
//2) 插入方式2
//1.Specify the HBase configuration file
implicit val prop = ConfigUtils.getHBaseConfig(context.parameter.toMap)
//2.break in...
source.writeUsingOutputFormat(new HBaseOutputFormat[TestEntity]("order", entry2Put))
}
}
When StreamPark writes to Apache HBase, you need to create the method of HBaseQuery, specify the method to convert the query result into the required object, identify whether it is running, and pass in the running parameters. details as follows
/**
* @param ctx
* @param property
*/
class HBaseSource(@(transient@param) val ctx: StreamingContext, property: Properties = new Properties()) {
/**
* @param query Specify the method to create H Base Query
* @param func The query results are converted into the expected counterparty method
* @param running runID
* @param prop Job parameters
* @tparam R
* @return
*/
def getDataStream[R: TypeInformation](query: R => HBaseQuery,
func: Result => R,
running: Unit => Boolean)(implicit prop: Properties = new Properties()) = {
Utils.copyProperties(property, prop)
val hBaseFunc = new HBaseSourceFunction[R](prop, query, func, running)
ctx.addSource(hBaseFunc)
}
}
StreamPark HBaseSource implements flink Async I/O, which is used to improve the throughput of Streaming: first create a DataStream, then create an HBaseRequest and call requestOrdered() or requestUnordered() to create an asynchronous stream, as follows:
class HBaseRequest[T: TypeInformation](@(transient@param) private val stream: DataStream[T], property: Properties = new Properties()) {
/**
*
* @param queryFunc
* @param resultFunc
* @param timeout
* @param capacity
* @param prop
* @tparam R
* @return
*/
def requestOrdered[R: TypeInformation](queryFunc: T => HBaseQuery, resultFunc: (T, Result) => R, timeout: Long = 1000, capacity: Int = 10)(implicit prop: Properties): DataStream[R] = {
Utils.copyProperties(property, prop)
val async = new HBaseAsyncFunction[T, R](prop, queryFunc, resultFunc, capacity)
AsyncDataStream.orderedWait(stream, async, timeout, TimeUnit.MILLISECONDS, capacity)
}
/**
*
* @param queryFunc
* @param resultFunc
* @param timeout
* @param capacity
* @param prop
* @tparam R
* @return
*/
def requestUnordered[R: TypeInformation](queryFunc: T => HBaseQuery, resultFunc: (T, Result) => R, timeout: Long = 1000, capacity: Int = 10)(implicit prop: Properties): DataStream[R] = {
Utils.copyProperties(property, prop)
val async = new HBaseAsyncFunction[T, R](prop, queryFunc, resultFunc, capacity)
AsyncDataStream.unorderedWait(stream, async, timeout, TimeUnit.MILLISECONDS, capacity)
}
}
StreamPark supports two ways to write data: 1. addSink() 2. writeUsingOutputFormat Examples are as follows:
//1)Insert way 1
HBaseSink().sink[TestEntity](source, "order")
//2) insert way 2
//1.Specify the HBase configuration file
implicit val prop = ConfigUtils.getHBaseConfig(context.parameter.toMap)
//
source.writeUsingOutputFormat(new HBaseOutputFormat[TestEntity]("order", entry2Put))
Other configuration
All other configurations must comply with the StreamPark configuration. For specific configurable items and the role of each parameter, please refer to the project configuration